4,570 research outputs found

    Critical properties of Ising model on Sierpinski fractals. A finite size scaling analysis approach

    Full text link
    The present paper focuses on the order-disorder transition of an Ising model on a self-similar lattice. We present a detailed numerical study, based on the Monte Carlo method in conjunction with the finite size scaling method, of the critical properties of the Ising model on some two dimensional deterministic fractal lattices with different Hausdorff dimensions. Those with finite ramification order do not display ordered phases at any finite temperature, whereas the lattices with infinite connectivity show genuine critical behavior. In particular we considered two Sierpinski carpets constructed using different generators and characterized by Hausdorff dimensions d_H=log 8/log 3 = 1.8927.. and d_H=log 12/log 4 = 1.7924.., respectively. The data show in a clear way the existence of an order-disorder transition at finite temperature in both Sierpinski carpets. By performing several Monte Carlo simulations at different temperatures and on lattices of increasing size in conjunction with a finite size scaling analysis, we were able to determine numerically the critical exponents in each case and to provide an estimate of their errors. Finally we considered the hyperscaling relation and found indications that it holds, if one assumes that the relevant dimension in this case is the Hausdorff dimension of the lattice.Comment: 21 pages, 7 figures; a new section has been added with results for a second fractal; there are other minor change

    Feedback-controlled transport in an interacting colloidal system

    Full text link
    Based on dynamical density functional theory (DDFT) we consider a non-equilibrium system of interacting colloidal particles driven by a constant tilting force through a periodic, symmetric "washboard" potential. We demonstrate that, despite of pronounced spatio-temporal correlations, the particle current can be reversed by adding suitable feedback control terms to the DDFT equation of motion. We explore two distinct control protocols with time delay, focussing on either the particle positions or the density profile. Our study shows that the DDFT is an appropriate framework to implement time-delayed feedback control strategies widely used in other fields of nonlinear physicsComment: 6 pages, 5 figure

    Relaxation dynamics in fluids of platelike colloidal particles

    Full text link
    The relaxation dynamics of a model fluid of platelike colloidal particles is investigated by means of a phenomenological dynamic density functional theory. The model fluid approximates the particles within the Zwanzig model of restricted orientations. The driving force for time-dependence is expressed completely by gradients of the local chemical potential which in turn is derived from a density functional -- hydrodynamic interactions are not taken into account. These approximations are expected to lead to qualitatively reliable results for low densities as those within the isotropic-nematic two-phase region. The formalism is applied to model an initially spatially homogeneous stable or metastable isotropic fluid which is perturbed by switching a two-dimensional array of Gaussian laser beams. Switching on the laser beams leads to an accumulation of colloidal particles in the beam centers. If the initial chemical potential and the laser power are large enough a preferred orientation of particles occurs breaking the symmetry of the laser potential. After switching off the laser beams again the system can follow different relaxation paths: It either relaxes back to the homogeneous isotropic state or it forms an approximately elliptical high-density core which is elongated perpendicular to the dominating orientation in order to minimize the surface free energy. For large supersaturations of the initial isotropic fluid the high-density cores of neighboring laser beams of the two-dimensional array merge into complex superstructures.Comment: low-resolution figures due to file size restrictions, revised versio

    Dynamical density functional theory: phase separation in a cavity and the influence of symmetry

    Get PDF
    Consider a fluid composed of two species of particles, where the interparticle pair potentials u11=u22u12u_{11} = u_{22} \neq u_{12}. On confining an equal number of particles from each species in a cavity, one finds that the average one body density profiles of each species are constrained to be exactly the same due to the symmetry, when both external cavity potentials are the same. For a binary fluid of Brownian particles interacting via repulsive Gaussian pair potentials that exhibits phase separation, we study the dynamics of the fluid one body density profiles on breaking the symmetry of the external potentials, using the dynamical density functional theory of Marconi and Tarazona [{\it J. Chem. Phys.}, {\bf 110}, 8032 (1999)]. On breaking the symmetry we see that the fluid one body density profiles can then show the phase separation that is present.Comment: 7 pages, 4 figures. Accepted for the proceedings of the Liquid Matter conference 2005, to be publication in J. Phys.: Condens. Matte

    Modelling the evaporation of thin films of colloidal suspensions using Dynamical Density Functional Theory

    Get PDF
    Recent experiments have shown that various structures may be formed during the evaporative dewetting of thin films of colloidal suspensions. Nano-particle deposits of strongly branched `flower-like', labyrinthine and network structures are observed. They are caused by the different transport processes and the rich phase behaviour of the system. We develop a model for the system, based on a dynamical density functional theory, which reproduces these structures. The model is employed to determine the influences of the solvent evaporation and of the diffusion of the colloidal particles and of the liquid over the surface. Finally, we investigate the conditions needed for `liquid-particle' phase separation to occur and discuss its effect on the self-organised nano-structures

    Interface pinning and slow ordering kinetics on infinitely ramified fractal structures

    Full text link
    We investigate the time dependent Ginzburg-Landau (TDGL) equation for a non conserved order parameter on an infinitely ramified (deterministic) fractal lattice employing two alternative methods: the auxiliary field approach and a numerical method of integration of the equations of evolution. In the first case the domain size evolves with time as L(t)t1/dwL(t)\sim t^{1/d_w}, where dwd_w is the anomalous random walk exponent associated with the fractal and differs from the normal value 2, which characterizes all Euclidean lattices. Such a power law growth is identical to the one observed in the study of the spherical model on the same lattice, but fails to describe the asymptotic behavior of the numerical solutions of the TDGL equation for a scalar order parameter. In fact, the simulations performed on a two dimensional Sierpinski Carpet indicate that, after an initial stage dominated by a curvature reduction mechanism \`a la Allen-Cahn, the system enters in a regime where the domain walls between competing phases are pinned by lattice defects. The lack of translational invariance determines a rough free energy landscape, the existence of many metastable minima and the suppression of the marginally stable modes, which in translationally invariant systems lead to power law growth and self similar patterns. On fractal structures as the temperature vanishes the evolution is frozen, since only thermally activated processes can sustain the growth of pinned domains.Comment: 16 pages+14 figure

    Derivation of the nonlinear fluctuating hydrodynamic equation from underdamped Langevin equation

    Full text link
    We derive the fluctuating hydrodynamic equation for the number and momentum densities exactly from the underdamped Langevin equation. This derivation is an extension of the Kawasaki-Dean formula in underdamped case. The steady state probability distribution of the number and momentum densities field can be expressed by the kinetic and potential energies. In the massless limit, the obtained fluctuating hydrodynamic equation reduces to the Kawasaki-Dean equation. Moreover, the derived equation corresponds to the field equation derived from the canonical equation when the friction coefficient is zero.Comment: 16 page

    Directed polymers and interfaces in random media : free-energy optimization via confinement in a wandering tube

    Full text link
    We analyze, via Imry-Ma scaling arguments, the strong disorder phases that exist in low dimensions at all temperatures for directed polymers and interfaces in random media. For the uncorrelated Gaussian disorder, we obtain that the optimal strategy for the polymer in dimension 1+d1+d with 0<d<20<d<2 involves at the same time (i) a confinement in a favorable tube of radius RSLνSR_S \sim L^{\nu_S} with νS=1/(4d)<1/2\nu_S=1/(4-d)<1/2 (ii) a superdiffusive behavior RLνR \sim L^{\nu} with ν=(3d)/(4d)>1/2\nu=(3-d)/(4-d)>1/2 for the wandering of the best favorable tube available. The corresponding free-energy then scales as FLωF \sim L^{\omega} with ω=2ν1\omega=2 \nu-1 and the left tail of the probability distribution involves a stretched exponential of exponent η=(4d)/2\eta= (4-d)/2. These results generalize the well known exact exponents ν=2/3\nu=2/3, ω=1/3\omega=1/3 and η=3/2\eta=3/2 in d=1d=1, where the subleading transverse length RSL1/3R_S \sim L^{1/3} is known as the typical distance between two replicas in the Bethe Ansatz wave function. We then extend our approach to correlated disorder in transverse directions with exponent α\alpha and/or to manifolds in dimension D+d=dtD+d=d_{t} with 0<D<20<D<2. The strategy of being both confined and superdiffusive is still optimal for decaying correlations (α<0\alpha<0), whereas it is not for growing correlations (α>0\alpha>0). In particular, for an interface of dimension (dt1)(d_t-1) in a space of total dimension 5/3<dt<35/3<d_t<3 with random-bond disorder, our approach yields the confinement exponent νS=(dt1)(3dt)/(5dt7)\nu_S = (d_t-1)(3-d_t)/(5d_t-7). Finally, we study the exponents in the presence of an algebraic tail 1/V1+μ1/V^{1+\mu} in the disorder distribution, and obtain various regimes in the (μ,d)(\mu,d) plane.Comment: 19 page

    Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments.

    Get PDF
    Starting from the Kramers equation for the phase-space dynamics of the N-body probability distribution, we derive a dynamical density functional theory (DDFT) for colloidal fluids including the effects of inertia and hydrodynamic interactions (HI). We compare the resulting theory to extensive Langevin dynamics simulations for both hard rod systems and three-dimensional hard sphere systems with radially symmetric external potentials. As well as demonstrating the accuracy of the new DDFT, by comparing with previous DDFTs which neglect inertia, HI, or both, we also scrutinize the significance of including these effects. Close to local equilibrium we derive a continuum equation from the microscopic dynamics which is a generalized Navier–Stokes-like equation with additional non-local terms governing the effects of HI. For the overdamped limit we recover analogues of existing configuration-space DDFTs but with a novel diffusion tensor

    Generalized Casimir forces in non-equilibrium systems

    Get PDF
    In the present work we propose a method to determine fluctuation induced forces in non equilibrium systems. These forces are the analogue of the well known Casimir forces, which were originally introduced in Quantum Field theory and later extended to the area of Critical Phenomena. The procedure starts from the observation that many non equilibrium systems exhibit long-range correlations and the associated structure factors diverge in the long wavelength limit. The introduction of external bodies into such systems in general modifies the spectrum of these fluctuations and leads to the appearance of a net force between these bodies. The mechanism is illustrated by means of a simple example: a reaction diffusion equation with random noises.Comment: Submitted to Europhysics Letters. 7 pages, 2 figure
    corecore